A Paley–wiener Theorem for Distributions on Reductive Symmetric Spaces
نویسنده
چکیده
Let X = G/H be a reductive symmetric space and K a maximal compact subgroup of G. We study Fourier transforms of compactly supported K-finite distributions on X and characterize the image of the space of such distributions.
منابع مشابه
Paley-wiener Theorem for Line Bundles over Compact Symmetric Spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2: Riemannian Symmetric Spaces and Related Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملA Paley-wiener Theorem for the Spherical Laplace Transform on Causal Symmetric Spaces of Rank 1 Nils Byrial Andersen and Gestur Olafsson
We formulate and prove a topological Paley-Wiener theorem for the normalized spherical Laplace transform deened on the rank 1 causal sym
متن کاملHolomorphic Sobolev Spaces, Hermite and Special Hermite Semigroups and a Paley-wiener Theorem for the Windowed Fourier Transform
The images of Hermite and Laguerre Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterised. These are used to characterise the image of Schwartz class of rapidly decreasing functions f on Rn and Cn under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for windowed ( short-time) Fourier tran...
متن کاملHarmonic Analysis on Semisimple Symmetric Spaces a Survey of Some General Results
We give a survey of the status of some of the fundamental problems in harmonic analysis on semisimple symmetric spaces, including the description of the discrete series, the deenition of the Fourier transform, the inversion formula, the Plancherel formula and the Paley{ Wiener theorem.
متن کاملA local Paley–Wiener theorem for compact symmetric spaces
The Fourier coefficients of a smooth K-invariant function on a compact symmetric spaceM = U/K are given by integration of the function against the spherical functions. For functions with support in a neighborhood of the origin, we describe the size of the support by means of the exponential type of a holomorphic extension of the Fourier coefficients. 1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005